PRELIMINARY NOTE

The preparation and some properties of tris(pyridine)aryl(or alkyl)titanium(III) chloride

Many organotitanium compounds which contain a σ type carbon-titanium bond have been reported¹⁻⁶. However, most of them are unstable and thus not convenient for investigations of the nature of the carbon-titanium bond. It is known that coordination of appropriate ligands can stabilize carbon-transition metal bonds and so we attempted to prepare some organotitanium compounds containing monodentate ligands.

To a pyridine solution of TiCl₃ was added an equimolar amount of dilute ethereal solution of RMgBr ($R = CH_3$ or C_6H_5) under nitrogen at -30° C, and the precipitate obtained was dissolved in tetrahydrofuran. After removal of magnesium halide by addition of pentane, the solution was concentrated under reduced pressure to give a deep blue deposit. Elemental and functional group analyses showed that it was RTiCl₂(pyridine)₃ ($R = CH_3$ or C_6H_5). These compounds were fairly stable under nitrogen at room temperature but decomposed easily when exposed to the air.

Other alkyl and *para*-substituted-phenyl magnesium bromides also gave deep blue compounds. Aryl derivatives were generally more stable than alkyl derivatives, most of which decomposed rapidly at room temperature, giving R[•] radicals.

Each of these compounds showed a broad absorption in 600–800 m μ region. For all *para*-substituted-phenyl derivatives, the λ_{max} shifted to longer wave length relative to that of TiCl₃(pyridine)₃ (605 m μ)⁷ and a good linear correlation was observed between the λ_{max} and the Hammett's σ_p value of the substituent (λ_{max} is 622 m μ for Cl-, 660 m μ for H-, 662 m μ for C₆H₅O-, 675 m μ for CH₃- and 680 m μ for CH₃-compounds.)

Hence, we can conclude that the ligand field strength of the *para*-substituted phenyl group is weaker than that of the Cl⁻ ion and that its strength decreases as the σ_p value of the substituent lowers. The absorption in the visible region can be assigned to the $\pi^*-\sigma^*$ transition⁷. Hence, it is reasonable that the λ_{max} correlates fairly well with σ_p since the substituent affects not only the π -electron systems but also the σ -electron systems, and σ_p is an empirical index of these effects.

Each of the mixture solutions of TiCl₃-pyridine-RMgBr showed a fairly symmetrical single ESR absorption with g value close to 2 (1.96–1.98) even at rigid state below -100° C. At higher temperature (above -30° C) the ESR spectra became sharp ($\Delta H < 20$ gauss) and symmetrical, owing to motional narrowing and averaging out of the anisotropy of g value⁸.

Different from the λ_{max} , the correlation between the g value and the σ_p is poor. The constant σ_p can be separated into the inductive (σ') and resonance ($\sigma_R = \sigma_p - \sigma'$) factors⁹. The \bar{g} value (observed at room temperature) shows a fairly good linear correlation with σ_R , except for deviation of the C₆H₅O-compound, (\bar{g} is 1.970 for H-, 1.968 for CH₃-, 1.965 for Cl-, 1.966 for C₆H₅O- and 1.960 for CH₃O-compounds.)

In the ground state of RTiCl₂(pyridine)₃, the unpaired electron would be

principally in π^* -orbitals as in most nearly octahedral complexes of Ti³⁺ ion¹⁰. Therefore, the properties of the unpaired electron would be much more sensitive to π -interaction between titanium and coordinating molecules than to the nature of σ bonds between them. Hence, it would be likely that the \bar{g} value would correlate reasonably well with $\sigma_{\rm R}$, which refers principally to the effects of a substituent on the nature of π -electron systems¹¹, rather than with $\sigma_{\rm p}$.

The \bar{g} value of alkyl derivatives was less affected by the species of alkyl groups as compared with anyl derivatives, and a fairly good correlation was observed between the \bar{g} value and the Taft's σ^* . The effects of the species of alkyl groups on the \bar{g} value were more remarkable when titanium bromide was used instead of chloride.

Details of results and discussions will be presented in the near future.

Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Hongo, Tokyo (Japan) Kei Matsuzaki Tamio Yasukawa

- 1 D. F. HERMAN AND W. K. NELSON, J. Am. Chem. Soc., 75 (1953) 3877, 3882.
- 2 C. BEERMANN AND H. BESTIAN, Angew. Chem., 71 (1959) 618.
- 3 K. CLAUSS AND C. BEERMANN, Angew. Chem., 71 (1959) 627.
- 4 H. J. BERTHOLD AND G. GROTH, Z. Anorg. Allgem. Chem., 319 (1963) 230.
- 5 V. N. LATJAEV, G. A. RAZUVAEV, A. V. MALISHEVA AND G. A. KILJAKOVA, J. Organometal. Chem., 2 (1964) 388.
- 6 K. H. THIELE AND J. MÜLLER, Z. Chem., 4 (1964) 273.
- 7 G. W. FOWLES AND R. A. HOODLESS, J. Chem. Soc., (1963) 33.
- 8 G. E. PAKE, Paramagnetic Resonance, Benjamin, New York, 1962, p. 55 and 97.
- 9 R. W. TAFT, JR., in M. S. NEWMAN (Ed.), Steric Effects in Organic Chemistry, Wiley, New York, 1956, Chapter 13.
- 10 A. CARRINGTON AND H. C. LONGUET-HIGGINS, Quarterly Review, 14 (1960) 427.
- 11 H. H. JAFFE AND M. ORCHIN, Theory and Application of Ultraviolet Spectroscopy, Wiley, New York, 1962, p. 247.

Received June 6th, 1967.

J. Organometal. Chem., 10 (1967) P9-P10

P10